Descriptive Statistics
Integrated course, 2.50 ECTS
Course content
Area 1: Introduction and parameters
- Overview of the sub-disciplines of statistics
- Level of measurements (scale of measure)
- Location, dispersion and association measures
- Basics of statistical visualization (especially boxplots and scatterplots)
Area 2: regression
- linear regression
- Linear transformable nonlinear regression
- Logistic regression
Area 3: Time series analysis
- Trends and seasonal components
- Autocorrelation
- Heteroscedasticity
Learning outcomes
Students have a profound understanding of important parameters and relationships in descriptive statistics. In addition, they are able to perform linear and linearly transformable nonlinear regressions and also to analyze time series fundamentally.
Recommended or required reading and other learning resources / tools
Recommended Literature and Books: - Arens, T., Hettlich, F. (2018). Mathematik. Springer Spektrum, 4. Auflage.
- Bronstein, I. N., Mühlig, H. (2016). Taschenbuch der Mathematik. Europa-Lehrmittel, 10. Auflage.
- Büning, H., Trenkler, G. (1994). Nichtparametrische statistische Methoden (De Gruyter Lehrbuch). De Gruyter, 2. Auflage.
- Field, A., Miles, H. (2012). Discovering Statistics Using R. Sage Publications Ltd., 1. Auflage.
- Hedderich, J., Sachs, L. (2018). Angewandte Statistik: Methodensammlung mit R. Springer Spektrum, 16. Auflage.
- Ugarte M. D., Miltino A. F. (2015). Probability and Statistics with R. CRC-Press, 2. Auflage.
Recommended journals and selected articles: All relevant journals and articles will be given in the class. Typical software for this module: R/RStudio etc.
Mode of delivery
1,25 ECTS Lecture, 1,25 ECTS Exercise
Prerequisites and co-requisites
none
Assessment methods and criteria
Lecture: final exam, Exercise: examination character