Probability theory and inductive statistics
Integrated course, 2.50 ECTS
Course content
Area 1: Probability Theory
- Basic concepts of probability theory
- Limit theorems
- Conditional probabilities and Bayes theorem
- Basic concepts of combinatorics
- Important discrete and continuous univariate distributions
Area 2: Inductive statistics
- Samples and confidence intervals
- Data reduction and sampling theorem
- Hypothesis tests for parametric and nonparametric distributions
- Resampling (bootstrapping, cross-validation, ...) and Monte Carlo method
- Maximum likelihood method
Learning outcomes
Students have a profound knowledge of probability theory and univariate inductive statistics. In particular, they are able to perform hypothesis tests based on parametric and nonparametric distributions.
Recommended or required reading and other learning resources / tools
Recommended Literature and Books: - Arens, T., Hettlich, F. (2018). Mathematik. Springer Spektrum, 4. Auflage.
- Bronstein, I. N., Mühlig, H. (2016). Taschenbuch der Mathematik. Europa-Lehrmittel, 10. Auflage.
- Büning, H., Trenkler, G. (1994). Nichtparametrische statistische Methoden (De Gruyter Lehrbuch). De Gruyter, 2. Auflage.
- Field, A., Miles, H. (2012). Discovering Statistics Using R. Sage Publications Ltd., 1. Auflage.
- Hedderich, J., Sachs, L. (2018). Angewandte Statistik: Methodensammlung mit R. Springer Spektrum, 16. Auflage.
- Ugarte M. D., Miltino A. F. (2015). Probability and Statistics with R. CRC-Press, 2. Auflage.
Recommended journals and selected articles: All relevant journals and articles will be given in the class. Typical software for this module: R/RStudio etc.
Mode of delivery
1,25 ECTS Lecture, 1,25 ECTS Exercise
Prerequisites and co-requisites
none
Assessment methods and criteria
Lecture: final exam, Exercise: examination character