Radiography

Physical and Biological Fundamentals of Radiography

Integrated course, 3.50 ECTS

 

Course content

Part 1: Fundamentals of radiation physics:

Topics include the structure of matter; types of radiation; radioactivity, decay law, decay schemes, types of decay, half-life, nuclear fission and fusion; interactions (including attenuation) of ionising radiation with matter: e.g. interaction of (1) photons with matter, (2) charged particles with matter or (3) neutrons with matter; attenuation laws, definitions and dose terms,
Note: Radiation protection training – general radiation protection training in accordance with §41 in human and dental medicine


Part 2 Fundamentals of dosimetry:
Physical fundamentals of dosimeters, fundamentals of radiation protection (e.g.: dose limits, monitoring);
Note: Radiation protection training – general radiation protection training in accordance with §41 in human and dental medicine


Part 3 Fundamentals of radiation biology
Biological interactions of radiation; radiation sensitivity of different tissues; acute and chronic adverse effects; influence of ionising radiation on dose response, radiation effects and cell death through ionising radiation, radiation sensitivity of different tissues, fundamentals of cell death (cell cycle), repair mechanisms (differences between adults and children), dose-response relationship (dose survival curve) for healthy tissue and tumour tissue, dose-response relationship for different fractionations, LET and RBE; oxygen effect and reoxygenation, repopulation, acute and late effects of ionising radiation.
Note: Radiation protection training – general radiation protection training in accordance with §41 in human and dental medicine

Learning outcomes

The students can classify physical-biological effects, models and impacts and can apply the findings to practical applications of radiology technology.

Recommended or required reading and other learning resources / tools

Books: Dutzmann, J., Maisch, M., & Schmitt, I. (2015). MEDI-LEARN Skriptenreihe 2015/16: Mathe/Physik im Paket: In 30 Tagen durchs schriftliche und mündliche Physikum (7. Aufl.). Kiel: MEDI-LEARN.
Gehrke, J. (2012). Mathematik im Studium: Ein Brückenkurs (2. Aufl.). München: De Gruyter Oldenbourg.
Harris, M., Taylor, G., & Taylor, J. (2013). Startwissen Mathematik und Statistik: Ein Crash-Kurs für Studierende der Biowissenschaften und Medizin. (M. Zillgitt, Übers.) (2007. Nachdruck 2013). Berlin; Heidelberg: Springer Spektrum.
Herrmann, T. (2006). Klinische Strahlenbiologie: Kurz und Bündig (4. Aufl.). München: Elsevier GmbH.
Jung, H. D. H. (1969). Molekulare Strahlenbiologie: Vorlesungen über die Wirkung ionisierender Strahlen auf elementare biologische Objekte. Springer Berlin Heidelberg.
Kiefer, J. (2012). Strahlen und Gesundheit: Nutzen und Risiken. Weinheim: Wiley-VCH Verlag GmbH & Co. KGaA.
Knorrenschild, M. (2009). Mathematik für Ingenieure 1: Grundlagen im Bachelorstudium. München: Carl Hanser Verlag GmbH & Co. KG.
Kogel, A. van der, & Joiner, M. (2009). Basic Clinical Radiobiology (4th ed.). London: Taylor & Francis Ltd.
Krebs, A. (1968). Strahlenbiologie. Berlin: Springer Berlin Heidelberg.
Krieger, H. (2012). Grundlagen der Strahlungsphysik und des Strahlenschutzes (4. Aufl.). Vieweg+Teubner Verlag.
Polanz, M., & Steiner, L. (2015). Crashkurs MedAT: Physik & Mathematik: Überarbeitete Auflage - November 2015 (2. Aufl.). Lochau: TOKAstudent.
Rowe, P. (2012). Statistik für Mediziner und Pharmazeuten. Weinheim: Wiley-VCH Verlag GmbH.
Schmidt, T., & Freyschmidt, J. (2014). Handbuch diagnostische Radiologie: Strahlenphysik, Strahlenbiologie, Strahlenschutz (Softcover reprint of the original 1st ed. 2003). Springer.
Wihler, T. (2012a). Mathematik für Naturwissenschaften: Einführung in die Analysis (1. Aufl.). Bern: UTB GmbH.
Wihler, T. (2012b). Mathematik für Naturwissenschaften: Einführung in die Lineare Algebra (1. Aufl.). Bern: UTB GmbH.
Journals: Farhood, B., & Ghorbani, M. (2017). Assessment of dose uniformity around high dose rate 192Ir and 60Co stepping sources. Radiological Physics and Technology, 1–10. https://doi.org/10.1007/s12194-017-0418-1
International Journal for Radiation Physics and Chemistry
ScienceDirect.com. (o. J.). Accessed 30 September 2017, http://www.sciencedirect.com/journal/international-journal-for-radiation-physics-and-chemistry
Lapp, R. E., Andrew, H. L., & Lind, S. C. (1949). Nuclear Radiation Physics. The Journal of Physical and Colloid Chemistry, 53(4), 595–595. https://doi.org/10.1021/j150469a022
Radiation Physics and Chemistry. (o. J.). Accessed at https://www.journals.elsevier.com/radiation-physics-and-chemistry

Mode of delivery

Integrated course

Prerequisites and co-requisites

No

Assessment methods and criteria

Written or oral examination