Radiography

Physical and Biological Fundamentals of Radiography

Integrated course, 3.50 ECTS

 

Course content

Part 1: Fundamentals of radiation physics: Topics include the structure of matter; types of radiation; radioactivity, decay law, decay schemes, types of decay, half-life, nuclear fission and fusion; interactions (including attenuation) of ionising radiation with matter: e.g. interaction of (1) photons with matter, (2) charged particles with matter or (3) neutrons with matter; attenuation laws, definitions and dose terms, Note: Radiation protection training – general radiation protection training in accordance with §41 in human and dental medicine. Part 2: Fundamentals of dosimetry: Physical fundamentals of dosimeters, fundamentals of radiation protection (e.g.: dose limits, monitoring); Note: Radiation protection training – general radiation protection training in accordance with §41 in human and dental medicine. Part 3: Fundamentals of radiation biology Biological interactions of radiation; radiation sensitivity of different tissues; acute and chronic adverse effects; influence of ionising radiation on dose response, radiation effects and cell death through ionising radiation, radiation sensitivity of different tissues, fundamentals of cell death (cell cycle), repair mechanisms (differences between adults and children), dose-response relationship (dose survival curve) for healthy tissue and tumour tissue, dose-response relationship for different fractionations, LET and RBE; oxygen effect and reoxygenation, repopulation, acute and late effects of ionising radiation.

Learning outcomes

General and specific competences in applying ionising radiation in medicine: 1. The graduate has profound knowledge of applying ionising radiation in medicine and contributes this knowledge to diagnosis and therapy for the benefit of the patient, together with other professional groups and in line with the current state of research. 2. The graduate is able to identify problems concerning the application of ionising radiation in medicine and to carry out quality assurance measures.

Recommended or required reading and other learning resources / tools

Books: Dutzmann, J., Maisch, M., & Schmitt, I. (2015). MEDI-LEARN Skriptenreihe 2015/16: Mathe/Physik im Paket: In 30 Tagen durchs schriftliche und mündliche Physikum (7. Aufl.). Kiel: MEDI-LEARN. Gehrke, J. (2012). Mathematik im Studium: Ein Brückenkurs (2. Aufl.). München: De Gruyter Oldenbourg. Harris, M., Taylor, G., & Taylor, J. (2013). Startwissen Mathematik und Statistik: Ein Crash-Kurs für Studierende der Biowissenschaften und Medizin. (M. Zillgitt, Übers.) (2007. Nachdruck 2013). Berlin; Heidelberg: Springer Spektrum. Herrmann, T. (2006). Klinische Strahlenbiologie: Kurz und Bündig (4. Aufl.). München: Elsevier GmbH. Jung, H. D. H. (1969). Molekulare Strahlenbiologie: Vorlesungen über die Wirkung ionisierender Strahlen auf elementare biologische Objekte. Springer Berlin Heidelberg. Kiefer, J. (2012). Strahlen und Gesundheit: Nutzen und Risiken. Weinheim: Wiley-VCH Verlag GmbH & Co. KGaA. Knorrenschild, M. (2009). Mathematik für Ingenieure 1: Grundlagen im Bachelorstudium. München: Carl Hanser Verlag GmbH & Co. KG. Kogel, A. van der, & Joiner, M. (2009). Basic Clinical Radiobiology (4th ed.). London: Taylor & Francis Ltd. Krebs, A. (1968). Strahlenbiologie. Berlin: Springer Berlin Heidelberg. Krieger, H. (2012). Grundlagen der Strahlungsphysik und des Strahlenschutzes (4. Aufl.). Vieweg+Teubner Verlag. Polanz, M., & Steiner, L. (2015). Crashkurs MedAT: Physik & Mathematik: Überarbeitete Auflage - November 2015 (2. Aufl.). Lochau: TOKAstudent. Rowe, P. (2012). Statistik für Mediziner und Pharmazeuten. Weinheim: Wiley-VCH Verlag GmbH. Schmidt, T., & Freyschmidt, J. (2014). Handbuch diagnostische Radiologie: Strahlenphysik, Strahlenbiologie, Strahlenschutz (Softcover reprint of the original 1st ed. 2003). Springer. Wihler, T. (2012a). Mathematik für Naturwissenschaften: Einführung in die Analysis (1. Aufl.). Bern: UTB GmbH. Wihler, T. (2012b). Mathematik für Naturwissenschaften: Einführung in die Lineare Algebra (1. Aufl.). Bern: UTB GmbH. Journals: Farhood, B., & Ghorbani, M. (2017). Assessment of dose uniformity around high dose rate 192Ir and 60Co stepping sources. Radiological Physics and Technology, 1–10. https://doi.org/10.1007/s12194-017-0418-1 International Journal for Radiation Physics and Chemistry ScienceDirect.com. (o. J.). Accessed 30 September 2017, http://www.sciencedirect.com/journal/international-journal-for-radiation-physics-and-chemistry Lapp, R. E., Andrew, H. L., & Lind, S. C. (1949). Nuclear Radiation Physics. The Journal of Physical and Colloid Chemistry, 53(4), 595–595. https://doi.org/10.1021/j150469a022 Radiation Physics and Chemistry. (o. J.). Accessed at https://www.journals.elsevier.com/radiation-physics-and-chemistry

Mode of delivery

face-to-face

Prerequisites and co-requisites

not applicable

Assessment methods and criteria

Final written or oral examinations